Beibei Zhu
1. Structure-Preserving Algorithms for Hamiltonian systems; 2. Averaging methods for highly oscillatory delay problems.
2020.07-present: Lecturer, School of Mathematics and Physics, University of Science and Technology Beijing (USTB), China; 2018. 04-2020. 06: Postdoc, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China; 2012.0 9-2018. 01: PhD, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China.
1. Construct efficient K-symplectic methods for separable non-canonical Hamiltonian systems; Construct a family of new explicit volume-preserving methods for Lorentz force system.
2. Propose and analyze a family of heterogenous multiscale method for the efficient integration of constant-delay differential equations subject to fast periodic forcing; Analyze the oscillatory dynamics of a time-delayed dynamical system subjected to a periodic external forcing.
1. B. B. Zhu, R. L. Zhang, Y. F. Tang, X. B. Tu, Y. Zhao, Splitting K-symplectic methods for non-canonical separable Hamiltonian problems, Journal of Computational Physics, 322 (2016) 387-399.
2. J.M. Sanz-Serna, B. B. Zhu(通讯), A stroboscopic averaging algorithm for highly oscillatory delay problems, IMA Journal of Numerical Analysis, 39 (2019) 1110-1133.
3. B. B. Zhu, Y. F. Tang, R. L. Zhang, Y. H. Zhang, Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation, Numerical Algorithms, 81 (2019) 1485-1503.
4. B. B. Zhu, Z. X. Hu, Y. F. Tang, and R. L. Zhang, Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields, Int. J. Model., Simul., Sci. Comput. 7, 1650008 (2016).
5. M. Coccolo, B. B. Zhu, M.A.F. Sanjuan, J.M. Sanz-Serna, Bogdanov-Takens resonance in time-delayed systems, Nonlinear Dynamics, 91 (2018) 1939-1947.
6. X. B. Tu, B. B. Zhu, Y. F. Tang, H. Qin, J. Liu, R. L. Zhang, A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force, Phys. Plasma, 23, 122514 (2016).